954 resultados para Apoptosis Regulatory Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental follicle is a component of tooth germs, which remain adjacent to the crown of unerupted or impacted teeth. Under the influence of pathologic changes, however, dental follicles that possess reduced epithelium can proliferate into stratified squamous epithelium as far as originate dental cysts. In order to clarify the role of apoptosis and cellular proliferation herein, expression of p53 and PCNA was examined in epithelial components of dental follicles associated with impacted third molars by means of immunohistochemistry. A total of 40 cases was included in this study being 22 cases with reduced epithelium and 18 cases with stratified epithelium. Expression of p53 expression was weak or not detected in dental follicles with reduced and stratified squamous epithelium. By contrast, PCNA positive cells were evidenced in basal and supra basal layers of the stratified squamous epithelium and in reduced epithelium of dental follicles, but without any significant statistically differences between them (P > 0.05). In conclusion, these data suggest that dental follicles possess proliferative activity as depicted by PCNA-positive nuclei in some epithelial cells. However, the biological behavior of dental follicles during the late stage of dental eruptive process may not be associated with deregulation of death and/or cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of p53, caspase-3, bcl-2, MIB-1, and PCNA to validate more objective methods to differentiate squamous cell carcinoma and keratoacanthoma, as well as to understand their pathogenesis with accuracy. A total of 52 cases of histopathologically diagnosed keratoacanthoma in the proliferative stage and 56 cases of well-differentiated squamous cell carcinoma were selected in this study. The expression was evaluated by means of immunohistochemistry. Bcl-2 immunoreactivity was weak or absent in the majority of cases, either in squamous cell carcinoma or in keratoacanthoma. PCNA-positive cells did not show differences between two lesions evaluated. on the other hand, MIB-1 was statistically significant (p<0.05) between squamous cell carcinomas and keratoacanthomas. Moreover, p53 and caspase-3 were overexpressed in squamous cell carcinomas. Together, these results suggest that the biological behavior of the well-differentiated squanous cell carcinomas of the skin may be associated with cellular proliferation and/or deregulation of cell death, indicated by increased expression of the MIB-1 and apoptotic proteins p53 and caspase-3, respectively. (C) 2007 Elsevier GrnbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactoferrin (Lf), an iron binding ~80 kDa glycoprotein is a well characterized multifunctional protein found to be present in mammalian milk and in most exocrine secretions. Besides Lf’s important physiological roles in the process of iron homeostasis, iron transportation and sequestration, it is well known for its properties such as anti-microbial, antiviral anti-inflammatory and immunomodulatory functions. In the recent decade, Lf has gained significant attention for its future potential use as a safer natural food (bovine milk) derived anti-cancer therapeutic. With regards to Lf’s chemopreventive effects in targeting carcinogenesis, both animal and human studies have widely reported its immunomodulatory properties to play a significant role. The deregulation of apoptosis (programmed cell death) mechanisms has not only major implications for the development of uncontrolled tumour growth but evasion of apoptosis is also an important factor affecting drug resistance and radioresistance in cancer. With the exception of few studies, the molecular basis by Lf treatment remains unclear. In this review, by addressing the main features of Lf’s structure and function we discuss the recent developments in delineating the therapeutic mechanisms of Lf and its effects on the proteins and receptors modulating apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data mining of Eucalyptus ESTs genome finds four clusters (EGCEST2257E11.g, EGBGRT3213F11.g, and EGCCFB1223H11.g) from highly conservative 14-3-3 protein family which modulates a wide variety of cellular processes. Multiple alignments were built from twenty four sequences of 14-3-3 proteins searched into the GenBank databases and into the four pools of Eucalyptus genome programs. The alignment has shown two regions highly conservative on the sequences corresponding to the motifs of protein phosphorylation and nine highly conservative regions on the sequence corresponding to the linkage regions of alpha helices structure based on three dimensional of dimer functional structure. The differences of amino acid into the structural and functional domains of 14-3-3 plant protein were identified and can explain the functional diversity of different isoforms. The phylogenic protein trees were built by the maximum parsimony and neighborjoining procedures of Clustal X alignments and PAUP software for phylogenic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult. In addition, the only approach that is currently available for performing functional studies is the use of serial biopsies, which is limited by ethical constraints and patient acceptance. The goal of this work was to establish a 3-D ex vivo culture technique in combination with reverse-phase protein microarrays (RPPM) as a novel experimental tool for use in cancer research. The RPPM platform allows the parallel profiling of large numbers of protein analytes to determine their relative abundance and activation level. Cancer tissue and the respective corresponding normal tissue controls from patients with colorectal cancer were cultured ex vivo. At various time points, the cultured samples were processed into lysates and analyzed on RPPM to assess the expression of carcinoembryonic antigen (CEA) and 24 proteins involved in the regulation of apoptosis. The methodology displayed good robustness and low system noise. As a proof of concept, CEA expression was significantly higher in tumor compared with normal tissue (p<0.0001). The caspase 9 expression signal was lower in tumor tissue than in normal tissue (p<0.001). Cleaved Caspase 8 (p=0.014), Bad (p=0.007), Bim (p=0.007), p73 (p=0.005), PARP (p<0.001), and cleaved PARP (p=0.007) were differentially expressed in normal liver and normal colon tissue. We demonstrate here the feasibility of using RPPM technology with 3-D ex vivo cultured samples. This approach is useful for investigating complex patterns of protein expression and modification over time. It should allow functional proteomics in patient samples with various applications such as pharmacodynamic analyses in drug development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NFAT (nuclear factor of activated T cells) is a family of transcription factors implicated in the control of cytokine and early immune response gene expression. Recent studies have pointed to a role for NFAT proteins in gene regulation outside of the immune system. Herein we demonstrate that NFAT proteins are present in 3T3-L1 adipocytes and, upon fat cell differentiation, bind to and transactivate the promoter of the adipocyte-specific gene aP2. Further, fat cell differentiation is inhibited by cyclosporin A, a drug shown to prevent NFAT nuclear localization and hence function. Thus, these data suggest a role for NFAT transcription factors in the regulation of the aP2 gene and in the process of adipocyte differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quiescent mouse embryonic C3H/10T½ cells are more resistant to different proapoptotic stimuli than are these cells in the exponential phase of growth. However, the exponentially growing 10T½ cells are resistant to inhibitors of RNA or protein synthesis, whereas quiescent cells die upon these treatments. Conditioned medium from quiescent 10T½ cells possesses anti-apoptotic activity, suggesting the presence of protein(s) that function as an inhibitor of the apoptotic program. Using differential display technique, we identified and cloned a cDNA designated sarp1 (secreted apoptosis-related protein) that is expressed in quiescent but not in exponentially growing 10T½ cells. Hybridization studies with sarp1 revealed two additional family members. Cloning and sequencing of sarp2 and sarp3 revealed 38% and 40% sequence identity to sarp1, respectively. Human breast adenocarcinoma MCF7 cells stably transfected with sarp1 or infected with SARP1-expressing adenovirus became more resistant, whereas cells transfected with sarp2 displayed increased sensitivity to different proapoptotic stimuli. Expression of sarp family members is tissue specific. sarp mRNAs encode secreted proteins that possess a cysteine-rich domain (CRD) homologous to the CRD of frizzled proteins but lack putative membrane-spanning segments. Expression of SARPs modifies the intracellular levels of β-catenin, suggesting that SARPs interfere with the Wnt–frizzled proteins signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 regulatory proteins Rev and Tat are expressed early in the virus life cycle and thus may be important targets for the immune control of HIV-1-infection and for effective vaccines. However, the extent to which these proteins are targeted in natural HIV-1 infection as well as precise epitopes targeted by human cytotoxic T lymphocytes (CTL) remain to be defined. In the present study, 57 HIV-1-infected individuals were screened for responses against Tat and Rev by using overlapping peptides spanning the entire Tat and Rev proteins. CD8+ T cell responses against Tat and Rev were found in up to 19 and 37% of HIV-1-infected individuals, respectively, indicating that these regulatory proteins are important targets for HIV-1-specific CTL. Despite the small size of these proteins, multiple CTL epitopes were identified in each. These data indicate that Tat and Rev are frequently targeted by CTL in natural HIV-1 infection and may be important targets for HIV vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An emerging theme in transforming growth factor-β (TGF-β) signalling is the association of the Smad proteins with diverse groups of transcriptional regulatory proteins. Several Smad cofactors have been identified to date but the diversity of TGF-β effects on gene transcription suggests that interactions with other co-regulators must occur. In these studies we addressed the possible interaction of Smad proteins with the myocyte enhancer-binding factor 2 (MEF2) transcriptional regulators. Our studies indicate that Smad2 and 4 (Smad2/4) complexes cooperate with MEF2 regulatory proteins in a GAL4-based one-hybrid reporter gene assay. We have also observed in vivo interactions between Smad2 and MEF2A using co-immunoprecipitation assays. This interaction is confirmed by glutathione S-transferase pull-down analysis. Immunofluorescence studies in C2C12 myotubes show that Smad2 and MEF2A co-localise in the nucleus of multinuclear myotubes during differentiation. Interestingly, phospho-acceptor site mutations of MEF2 that render it unresponsive to p38 MAP kinase signalling abrogate the cooperativity with the Smads suggesting that p38 MAP Kinase-catalysed phosphorylation of MEF2 is a prerequisite for the Smad–MEF2 interaction. Thus, the association between Smad2 and MEF2A may subserve a physical link between TGF-β signalling and a diverse array of genes controlled by the MEF2 cis element.